Monitoring Technique

VARIMETER
Motor Load Monitor BH 9097

Translation of the original instructions

Product Discription

The load monitor BH 9097 of the VARIMETER series reliably monitors the load of motors as well as the functionality of electrical consumers. If the load exceeds or falls below the limit values, which can be set by means of a rotary switch, the corresponding output relay is activated. To suppress short-term load fluctuations, a response delay tv can be set. LEDs indicate the switching status of the associated output relays. Early detection of impending failures and preventive maintenance prevent costly damage, and as a user you benefit from the operational safety and high availability of your system.

Function Diagram for Setting De-energized on Fault*)

[^0]
Your Advantages

- Identification of
- Underload P_{1} and Overload P_{2}
- Overload P_{1} (prewarning) and Overload P_{2} programmable
- Adjustment of P_{1} and P_{2} on absolute scale
- For motors up to $22 \mathrm{~kW} / 400 \mathrm{~V} ; 37 \mathrm{~kW} / 600 \mathrm{~V}$
- Large current range because of automatic range selection
- De-energized or energized on fault, programmable
- Early detection of irregularities
- Reduced wiring effort

Features

- According to IEC/EN 60255-1, IEC/EN 60255-26, DIN/VDE 0435-303
- Measurement: Effective power
- 1 changeover contact for P_{1} and 1 changeover contact for P_{2}
- Adjustable start-up time delay t_{a}
- Adjustable switching delay t_{v}
- With automatic or manual reset, programmable
- Test / Reset button for easy setup
- Up to 40 A without external current transformer
- Also for single-phase operation
- LED indicators
- Width 45 mm

Approvals and Markings

C \Subset
 A025518

> * see variants

Applications

The BH 9097 is used to monitor variable loads on industrial motors.

Function

Due to the 1-phase measuring principle, a symmetrical load of all 3 phases is assumed, as is usual with motor loads. Using DIPswitches the unit can be set up to act as under- and overload relay $\mathrm{P}_{1 \text { min }} / \mathrm{P}_{2 \text { max }}$ or as overload relay with pre-warning $\mathrm{P}_{1 \text { max }} / \mathrm{P}_{2 \text { max }}$. The settings of P_{1} and P_{2} are absolute values and calibrated in Watts adjustable via rotational switches. 2 LEDs show the state of the corresponding output relays. The unit can be configured to energise or to de-energise on fault. Every output relay is fitted with it's own time delay t_{v}. A start-up time delay t_{a} acts on both outputs.

Indication

Green LED, U_{N} : Flashing: \quad During start-up time delay t_{a} Continuous: Supply connected
Yellow LED, P_{1} : Flashing: During time delay $\mathrm{t}_{\mathrm{v} 1}$ and for set up assistance
Yellow LED, P_{2} :
Continuous: When relay P_{1} active (contact 11-14) During time delay t_{v} and for set up assistance
Continuous: When relay P_{2} active (contact 21-24)

Fault indication

2 different faults are displayed with the LEDs.
1.) No measurement:

Without measuring voltage measurement is not possible

- All 3 LEDs flash in sequence one after the other.

The output contacts are in failure state.
2.) The BH 9097 measures negative load:

Possible reason: The unit measures reverse power or the current connections are connected wrong.

- All 3 LEDs flash simultaneously.

Connection Diagrams

BH 9097.38/001

BH 9097.38/011

BH 9097.38

BH 9097.38/010

Technical Data
Input
Measuring voltage
Voltage range:
Input resistance:
Measuring current
Measuring range:
Without auxiliary voltage $0.8 \ldots 1.1 \times U_{N}$ with auxiliary voltage, see setting ranges $300 \mathrm{k} \Omega \ldots 500 \mathrm{k} \Omega$

See setting ranges

Nominal current [A]	40	24	8	2.4	0.8	0.24
Permissible current range						
(overload) [A]	$0 \ldots 40$	$0 \ldots 40$	$0 \ldots 16$	$0 \ldots 8$	$0 \ldots 2,4$	$0 \ldots 1$
continuously:	150	150	20	16	3	1,5
1 min. (10 min. break):	200	200	25	20	4	2
20 s (10 min. break):	≤ 1	≤ 1	7	14	830	830

Frequency range:

10 ... 400 Hz
(please see characteristics M7953)
Setting Ranges
P_{1} und P_{2} on absolute scale
Switch

load range	
for P1 and P2:	Lower range Upper range Measuring accuracy (in \% of setting value):
Hysteresis (in \% of setting value): $\pm 4 \% \quad(2 \%$ on request) Harmonic distortion: $<5 \%$ Reaction time: $<40 \%$ Switching delay $t_{v 1} / t_{v 2}:$ $<50 \mathrm{~ms}$ Start-up time delay $t_{a}:$ $0 \ldots 10 \mathrm{~s}$ (infinite variable)$\quad 0 \ldots 30 \mathrm{~s}$ (infinite variable)	

Setting Ranges

Available variants	Measuring voltage \mathbf{U}_{N}	Measuring current $\mathrm{I}_{\mathrm{N}}[\mathrm{A}]$	selection of load range
1-phase			
Without auxiliary voltage			
BH 9097.38/000	AC 230 V	$0.0024 \ldots 0.24$	0.1 ... 60 W
	AC 230 V	$0.024 \ldots 2.4$	$1 . . .600 \mathrm{~W}$
	AC 230 V	$0.24 . . .24$	$10 . .6000 \mathrm{~W}$
With auxiliary voltage			
BH 9097.38/010	AC 35... 250 V	$0.0024 \ldots 0,24$	0.1 ... 60 W
	AC 35... 250 V	$0.024 \ldots 2,4$	$1 . . .600 \mathrm{~W}$
	AC 35... 250 V	$0.24 \ldots 24$	$10 . . .6000 \mathrm{~W}$
3-phase			
Without auxiliary voltage			
BH 9097.38/001	3 AC 400 V	$0.008 \ldots 0,8$	0.1 ... 60 W
	3 AC 400 V	0.08 ... 8	$10 . . .6000 \mathrm{~W}$
	3 AC 400 V	$0.4 \ldots 40$	0.1 ... 30 kW
With auxiliary voltage			
BH 9097.38/011	3 AC 60 ... 440 V	$0.008 \ldots 0,8$	1 ... 600 W
	3 AC $60 . . .440 \mathrm{~V}$	0.08 ... 8	$10 . . .6000 \mathrm{~W}$
	3 AC 100 ... 760 V	$0.4 \ldots 40$	0.1 ... 52 kW

Auxiliary Circuit

Auxiliary voltage \mathbf{U}_{H}
Only for BH 9097.38/010,
BH 9097.38/011:

Voltage range:
Frequency range of U_{H} :
Input current
AC 110 V:
AC 230 V :
DC 24 V :

AC 110 V (terminals A 1 - A 2), AC 230 V (terminals A 1-A 3), DC 24 V
0.8 ... 1.1 U
$45 \ldots 400 \mathrm{~Hz}$

Approx. 30 mA
Approx. 15 mA
Approx. 50 mA

Technical Data

Output

Contacts:
Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15
NO contact:
NC contact:
To DC 13:
Electrical life
to AC 15 at 3 A, AC 230 V :
Permissible switching
frequency:
Short circuit strength
max. fuse rating:
Mechanical life:

1 changeover contact for P1
1 changeover contact for P2 2×5 A
$\begin{array}{ll}3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} & \text { IEC/EN 60947-5-1 } \\ 1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} & \text { IEC/EN 60947-5-1 }\end{array}$ 1 A / DC 24 V IEC/EN 60947-5-1
2×10^{5} switching cycles IEC/EN 60947-5-1
1800 switching cycles / h
4 A gG / gL IEC/EN 60947-5-1
30×10^{6} switching cycles

Continuous
$-20 \ldots+55^{\circ} \mathrm{C}$

4 kV / 2
IEC 60664-1
Rated impulse voltage

pollution degree:	$4 \mathrm{kV} / 2$	IEC 60664-1
EMC		
Electrostatic discharge:	8 kV (air)	IEC/EN 61000-4-2
HF-irradiation:	$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61000-4-3
Fast transients:	2 kV	IEC/EN 61000-4-4
Surge voltages between		
wires for power supply:	1 kV	IEC/EN 61000-4-5
Between wire and ground:	2 kV	IEC/EN 61000-4-5
HF-wire guided:	10 V	IEC/EN 61000-4-6
Interference suppression:	Limit value class B	EN 55011
Degree of protection		
Housing:	IP 40	IEC/EN 60529
Terminals:	IP 20	IEC/EN 60529

Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60068-2-6
20/055/04
IEC/EN 60068-1 EN 50005
$1 \times 10 \mathrm{~mm}^{2}$ solid or
$1 \times 6 \mathrm{~mm}^{2}$ stranded wire with sleeve
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve or
$1 \times 2,5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46228-1/-2/-3/-4

Wire fixing:

Mounting:
Weight:
Box terminals with self-lifting wire protection and Plus-minus terminal screws M3.5
DIN rail
430 g
Dimensions
Width \mathbf{x} height \mathbf{x} depth: $45 \times 84 \times 121 \mathrm{~mm}$

CCC-Data

Thermal current I_{th} :
4 A

Switching capacity

to AC 15:
3 A / AC 230 V
IEC/EN 60947-5-1
To DC 13:

1 A / DC 24 V
EC/EN 60947-5-1

Standard Type

BH 9097.38/001 3 AC $400 \mathrm{~V} 50 / 60 \mathrm{~Hz} \mathrm{t}_{\mathrm{a}} 30 \mathrm{~s} \quad \mathrm{t}_{\mathrm{v}} 10 \mathrm{~s}$
Article number: 0053944

- 3-phase, without auxiliary supply

- Output:	1 changeover contact for P1 and
	1 changeover contact for P2
- Nominal voltage $\mathrm{U}_{\mathrm{N}}:$	3 AC 400 V
- Width:	45 mm

Variants

BH 9097:
BH 9097.38/001:
With CCC-approval on request
3-phase without auxiliary supply
3-phase with auxiliary supply
1-phase without auxiliary supply
1-phase with auxiliary supply
With galvanically separated current path.
For applications with current transformers grounded on the secondary side, current range limited to 25 A
BH 9097.38/801:
Same as BH 9097.38/001, but with start-up time delay $\mathrm{t}_{\mathrm{a}}=0 \ldots 10 \mathrm{~s}$

Ordering example for variants

Characteristics

Max. input current curve in relation to input frequency

Continuous current limit curve
(Current over 2 contacts)
M8367

[^1]
Settings

2 rotational switches for P_{1} : 2 rotational switches for P_{2} : Potentiometer $t_{v 1}$: Potentiometer $\mathrm{t}_{\mathrm{v} 2}$: Potentiometer t_{a} : Test/Reset-Taste:

Dip-switches:

$$
\begin{array}{cl}
x 10 & \mid x 1 \\
A & \mid R \\
P_{2 \text { max. }} \mid & P_{2 \text { max. }} \\
P_{1 \text { max. }} \mid P_{1 \text { min. }}
\end{array}
$$

Value P_{1} (2 decades)
Value P_{2} (2 decades)
Time delay for value P_{1}
Time delay for value P_{2}
Start-up time delay after connection voltage
Test function as setting assistance
Reset function when manual reset is selected

Selection of upper / lower load range Selection of closed or open circuit Operation for output relays

2 MAX switching values (Overload with Pre-warning) or MAX and MIN switching value (Overload / Underload monitoring) Manual / automatic reset for P_{1} Manual / automatic reset for P_{2}

S1 ON I OFF:
S2 ON I OFF:

Connection

The device has to be connected according to the connection diagrams. The motor is connected to terminals L/i and T/k or L1/i and T1/k. The flow direction of the current has to be observed. On reverse power the unit gives a fault signal. The max continuous motor current is 40 A limited by the terminals. With higher currents a current transformer with 2,5 VA has to be used.

Set-up Procedure and Setting Instructions

Adjustemt example: response value: $\mathbf{2 , 5} \mathbf{~ k W}$
M9950_a

Response value $=25 \times 0.1=2.5 \mathrm{~kW}$
The adjustment of the unit can be made without additional measuring equipment and calculations. Please make sure that the load values are in the permitted operating range of the unit. Based on the max permitted values the BH 9097 can be used for 48 kW 3-phase motors at 3 AC 690 V and 5.8 kW single phase motors at AC 230 V .
There are three methods to set up the unit:

Method 1:

If the absolute values of the actual required tripping points P_{1} and P_{2} are known, they can be set directly on the unit (2-digit setting of P_{1} and P_{2}^{2}).

Method 2:

This method is recommended when it is possible to simulate the different load situations during set-up. In this case nothing has to be calculated. Turn the delay time for P_{1} and P_{2} to min. The motor runs in underload while the Pot 1 is turned until the output relay switches. The same has to be done for overload. Now the unit is set accurately. Now adjust the operate delay and the start-up delay to the required values.
Pressing the test / reset button during setup disables the switching of the output relays. The LEDs of P_{1} and P_{2} flash.

Method 3:

This method is the most simple one but not the most accurate. The operate delay is set to min . The motor is switched on and runs on nominal load. With both potentiometers the set points are searched by slowly turning the max. Pot from high to low value and the min. Pot from low to high value until the corresponding output relays switch. After that turn the Pot P_{2} to the right (e.g. $+10 \%$) side and the Pot P_{1} to the left (e.g. - 10%) until the output relays reset. The unit is now set and responds if the load differs from the nominal value. Finally set the operate delay and start-up delay to the required values. The DIP switch should be set to $P_{1 \text { min }} / P_{2 \text { max }}$.

single phase

BH 9097.38

BH 9097.38/010

3-phase

BH 9097.38/011

Connection Examples with External Current Transformer

single phase

BH 9097.38

3-phase

Note:	When using external CTs the adjusted value has to be multiplied with the
transmission ratio (ü) of the CT.	
Example:	Switching value $=$ Setting value $(\mathrm{P} 1 / \mathrm{P} 2) \times$ ü

[^0]: P1max/P2max: Overload monitoring with prewarning
 P1min/P2max: Under- and overload monitoring
 S1/S2 ON:
 S1/S2 OFF: Manual reset
 IIIII: Automatic reset
 Corresponding LED is flashing
 *) when set to energized on fault the function of LEDs and output relays are inverted.

[^1]: Technical data that is not stated in the CCC-Data, can be found in the technical data section.

