Monitoring Technique

VARIMETER
Motor Load Transmitter BH 9098

Translation of the original instructions

DOLD

Your Advantages

- As load depending output signals are available
- $0 \ldots 20 \mathrm{~mA}$ and $0 \ldots 10 \mathrm{~V}$ or
- 4 ... 20 mA and $2 \ldots 10 \mathrm{~V}$
- For motors up to $22 \mathrm{~kW} / 400 \mathrm{~V}$ or $37 \mathrm{~kW} / 690 \mathrm{~V}$
- Early detection of irregularities
- Reduced wiring effort

Features

- According to IEC/EN 60255-1
- Measurement: Effective power
- Adjustment of P_{1} and P_{2} on absolute scale
- Adjustable start-up time delay t_{a}
- Up to 40 A without external current transformer
- As option for single phase loads
- LED indicators
- Width 45 mm

Approvals and Markings

C

Applications

The motor load transmitter is suitable to monitor motors with variable load.

Function

Due to the 1-phase measuring principle, a symmetrical load of all 3 phases is assumed, as is usual with motor loads. The power consumption of the load is continuously monitored and converted into a standard dc current or voltage signal. Two pairs of rotary switches, P1 and P2 set the lower and upper end of the measured range in Watts. When the monitored load is between these set values a proportional output signal is produced. If the monitored load is out side the set range the output signal will remain at minimum or maximum.

Indicators		
Green LED, $\mathrm{U}_{\mathrm{N}}:$	Flashing: Continuous light:	Start-up time delay t_{a} Voltage connected

Failure Indication

Two different failure states are displayed by LEDs.

1.) No measuring voltage:

If the measuring voltage is missing, measurement is not possible.

- The LED flashes fast in intervals.
- The output signals are on min. value.

2.) Reverse power:

The calculated power value is negative.

- The LED flashes fast.
- The output signals are on min. value.

Possible reason:
The unit detects reverse power or the current connections are inverted.

Circuit Diagrams

BH 9098.90

BH 9098.90/001

BH 9098.90/010

BH 9098.90/011

Connection Terminals	
Terminal designation	Signal description
A1, A2, A3	Auxiliary voltage
L1/i, L2, L3, N	Voltage measuring input AC
L1/i, T1/k	Current measuring circuit AC
U, I	Analogue output

Technical Data
Input
Measuring voltage
Voltage range:
Input resistance:
Mesured current
Measuring range:
Without auxiliary voltage $0.8 \ldots 1.1 \times U_{N}$ with auxiliary voltage, see setting ranges $300 \mathrm{k} \Omega \ldots 500 \mathrm{k} \Omega$

See setting ranges

Rated current [A]	40	24	8	2.4	0.8	0.24
Permissible current range						
(overload) [A]						
continuously:	$0 \ldots 40$	$0 \ldots 40$	$0 \ldots 16$	$0 \ldots 8$	$0 \ldots .4$	$0 \ldots 1$
1 min. (10 min. break):	150	150	20	16	3	1.5
20 s (10 min. break):	200	200	25	20	4	2
Input resistance of current i-k [m Ω]:	≤ 1	≤ 1	7	14	150	500

Frequency range:
10 ... 400 Hz (see characteristics M7953)

Setting Ranges

\mathbf{P}_{1} und \mathbf{P}_{2} on absolute scale:
Upper Switch
load range

for P1 and P2:	Lower range
Measuring accuracy	
(in \% at nominal load):	$\pm 5 \%$
Harmonic distortion:	$<40 \%$
Start-up time delay $\mathrm{t}_{\mathrm{a}}:$	$0 \ldots 30 \mathrm{~s}$ (infinetely variable)

Analogue Output for Current $0 /+1$

Galvanically isolated
to measuring input and
auxiliary voltage: 4 kV eff.
Output current: DC $0 \ldots 20 \mathrm{~mA}$
DC 4 ... 20 mA
(selectable via DIP switch)
Output impendance (Load): Max. 500Ω
Analogue Output for Voltage 0 / +U

Galvanically isolated

to measuring input and

auxiliary voltage:	4 kV eff.
Output voltage:	DC $0 \ldots 10 \mathrm{~V}$
	DC $2 \ldots 10 \mathrm{~V}$
	(selectable via DIP switch)
Output impendance (Load):	Min. 5000Ω

Setting Ranges

Available variants	Measuring voltage \mathbf{U}_{N}	Measuring current $\mathrm{I}_{\mathrm{N}}[\mathrm{A}]$	Selection of load range resistive
1-phase without auxiliary voltage			
BH 9098.90/000	AC 230 V	$0.0024 \ldots 0.24$	0.1 ... 60 W
	AC 230 V	$0.024 \ldots 2.4$	$1 . . .600 \mathrm{~W}$
	AC 230 V	$0.24 . . .24$	$10 . .6000 \mathrm{~W}$
With auxiliary voltage			
BH 9098.90/010	AC $35 . .250 \mathrm{~V}$	0.0024 ... 0.24	0.1 ... 60 W
	AC $35 \ldots 250 \mathrm{~V}$	$0.024 \ldots 2.4$	$1 . . .600 \mathrm{~W}$
	AC $35 . . .250 \mathrm{~V}$	0.24 ... 24	$10 . .6000$ W

3-phase

without auxiliary voltage
BH 9098.90/001
With auxiliary voltag

3 AC 400 V	$0.008 \ldots 0,8$	$0.1 \ldots 60 \mathrm{~W}$
3 AC 400 V	$0.08 \ldots 8$	$10 \ldots 6000 \mathrm{~W}$
3 AC 400 V	$0.4 \ldots 40$	$0.1 \ldots 30 \mathrm{~kW}$
C $60 \ldots 440 \mathrm{~V}$	$0.008 \ldots 0.8$	$1 \ldots 600 \mathrm{~W}$
$60 \ldots 440 \mathrm{~V}$	$0.08 \ldots 8$	$10 \ldots 6000 \mathrm{~W}$
$100 \ldots 760 \mathrm{~V}$	$0.4 \ldots 40$	$0.1 \ldots 52 \mathrm{~kW}$

Technical Data

Auxiliary Circuit
 Auxiliary voltage U_{H}

 only for BH 9098.90/010 and BH 9098.90/011:Voltage range:
Frequency range of U_{H} :
Input current
AC 110 V :
AC 230 V :
DC 24 V :
AC 110 V (terminals A 1-A 2), AC 230 V (terminals A 1 - A 3), DC 24 V

General Data
Operating mode

Temperature range
Operation:
Storage:
Altitude:
Clearance and creepage

distances

Rated impulse voltage /
pollution degree:
$4 \mathrm{kV} / 2$
IEC 60664-1
EMC
Electrostatic discharge:
8 kV (air)
$10 \mathrm{~V} / \mathrm{m}$
2 kV
$-20 \ldots+55^{\circ} \mathrm{C}$
$-20 \ldots+55^{\circ} \mathrm{C}$
$\leq 2000 \mathrm{~m}$

HF-irradiation
80 MHz ... 2.7 GHz :
Fast transients:

1 kV
IEC/EN 61000-4-5
between
wires for power supply:
IEC/EN 61000-4-5
Between wire and ground:
10 V
IEC/EN 61000-4-6
Interference suppression:
Units with AC auxiliary voltage: Limit value class B
EN 55011
Units with DC auxiliary voltage: Limit value class A^{*})
*) The device is designed for the usage under industrial conditions (Class A, EN 55011). When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.

Degree of protection	
Housing:	IP 40 IEC/EN 60529
Terminals:	IP 20 IEC/EN 60529
Housing:	Thermoplast with Vo-behaviour according to UL subject 94
Vibration resistance:	Amplitude 0.35 mm frequency 10 ... 55 Hz , IEC/EN 60068-2-6
Climate resistance:	20/055/04 IEC/EN 60068-1
Terminal designation:	EN 50005
Wire connection	
Load terminals:	$1 \times 10 \mathrm{~mm}^{2}$ solid or $1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled
Stripping length:	11 mm
Fixing torque:	1.2 Nm
Wire connection:	Box terminals with self-lifting wire protection and plus-minus terminal screws M4
Control terminals:	$1 \times 4 \mathrm{~mm}^{2}$ solid or $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled or $1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled or DIN 46228-1/-2/-3/-4
Stripping length:	11 mm
Fixing torque:	0.8 Nm
Wire connection:	Box terminals with self-lifting wire protection and plus-minus terminal screws M3.5
Mounting:	DIN rail IEC/EN 60715
Weight:	430 g
Dimensions	
Width x height x depth:	$45 \times 84 \times 118 \mathrm{~mm}$

Standard Type

BH 9098.90/001 3 AC 400 V AC 40 A
Article number: $\quad 0055544$

- 3-phase, without auxiliary voltage
- Output: Analogue
- Nominal voltage $\mathrm{U}_{\mathrm{N}}: \quad 3 \mathrm{AC} 400 \mathrm{~V}$
- Width: 45 mm

Variant

BH 9098.90/1 \qquad

BH 9098.90/011:
BH 9098.90/000:
BH 9098.90/010:
3 -phase without auxiliary voltage with galvanically separated current path. For applications with current transformers grounded on the secondary side, current range limited to 25 A 3 -phase with auxiliary voltage 1-phase without auxiliary voltage 1-phase with auxiliary voltage

Ordering example for variants

Settings

Rotational switches P_{1} and P_{2} (2 digits) (calculation for resistive load) 48 kW
The switches are used to set the minimum and maximum load values P_{1} and P_{2} of the load characteristics. The scale shows the absolute value. On the 3 -phase variant the max. possible power setting value is 52 kW ($760 \mathrm{~V} \times 40 \mathrm{~A} \times 1.732$). The setting resolution is 1 kW and the load range can be selected by DIP-switchs. If the load range is reduced by factor 10 the setting resolution is 100 W .

Potentiometer t_{a}

A start-up time delay can be adjusted between $0 \ldots 30 \mathrm{~s}$.
After mains voltage is connected the start-up time delay begins. During this time the measurement is disabled and the LED flashes (see indicators). Independent of the settings the analogue output is on min. value.

DIP-switches:

Reduction of load range P_{1} and P_{2} by factor 10

Selection of output signal:

| Selection
 $4 \ldots 20 \mathrm{~mA}$ to
 $2 \ldots 10 \mathrm{~V}$ to | $0 \ldots 20 \mathrm{~mA}$ |
| :--- | :--- | :--- |
| $2 \ldots 10 \mathrm{~V}$ | |

Connection

The connection has to be made according to the application drawings. The measuring current has to be connected to terminals L / i and T / k or $\mathrm{L} 1 / \mathrm{i}$ and $\mathrm{T} 1 / \mathrm{k}$. The flow direction of the current must be correct. On reverse power the unit gives a failure indication. The maximum nominal motor current flowing directly through the load transmitter is 40 A . On higher current a current transformer with 2.5 VA burden capacity has to be used.

Functional Note

For proper operation, all phases and a correct phase sequence must be present.

Set-up Procedure and Setting Instructions

Adjustemt example: response value: 2.5 kW
M9950 a

Response value $=25 \times 0.1=2.5 \mathrm{~kW}$

The load charasteristic shows 3 sections:

Example 1

The smaller value is adjusted on P_{1}
The higher value is adjusted on P_{2}
Standard setting: Positive characteristic

- If the effective power consumption of the load is in section 1 between 0 W and P_{1} setting the analogue output signal is on minimum value.
- If the effective power consumption of the load is in section 2 between P_{1} and P_{2} setting the analogue output signal is proportional to the effective load following a positive characteristic.
- If the effective power consumption of the load is in section 3 between P_{2} setting and Pmax the analogue output signal is on maximum value.

Example 2

$P_{1}=0$ and $P_{2}=P \max$

- Selection of the maximum possible load range span.

The whole load range of the unit is converted into a proportional output signal. Section 1 and 3 are missing.

Example 3

$P_{1}=P_{2}$

- If the same value is adjusted for P_{1} and P_{2} section 2 is missing, i.e. the output signal is either on minimum or maximum value. The unit works as limit switch.

Example 4

On P_{1} the higher value is adjusted.
On P_{2} the lower value is adjusted.

- Inverted output, negative characteristic

Characteristic

Max. input current curve in relation to input frequency

1-phase

BH 9098.90

3-phase

BH 9098.90/001

BH 9098.90/010

BH 9098.90/011

BH 9098.90/100

BH 9098.90/110

BH 9098.90/101

BH 9098.90/111

Connection Examples with external current transformer

1-phase

BH 9098.90

3-phase

BH 9098.90/001

Note:

Example:

When using external CTs the adjusted value has to be multiplied with the transmission ratio (ü) of the CT.

Switching value $=$ Setting value (P1/P2) x ü e.g. for 100/5A C/T u=20 (100 divided by 5)

